Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials.

نویسندگان

  • Anh Le-Tuan Pham
  • Fiona M Doyle
  • David L Sedlak
چکیده

To gain insight into factors that control H(2)O(2) persistence and ·OH yield in H(2)O(2)-based in situ chemical oxidation systems, the decomposition of H(2)O(2) and transformation of phenol were investigated in the presence of iron-containing minerals and aquifer materials. Under conditions expected during remediation of soil and groundwater, the stoichiometric efficiency, defined as the amount of phenol transformed per mole of H(2)O(2) decomposed, varied from 0.005 to 0.28%. Among the iron-containing minerals, iron oxides were 2-10 times less efficient in transforming phenol than iron-containing clays and synthetic iron-containing catalysts. In both iron-containing mineral and aquifer materials systems, the stoichiometric efficiency was inversely correlated with the rate of H(2)O(2) decomposition. In aquifer materials systems, the stoichiometric efficiency was also inversely correlated with the Mn content, consistent with the fact that the decomposition of H(2)O(2) on manganese oxides does not produce ·OH. Removal of iron and manganese oxide coatings from the surface of aquifer materials by extraction with citrate-bicarbonate-dithionite slowed the rate of H(2)O(2) decomposition on aquifer materials and increased the stoichiometric efficiency. In addition, the presence of 2 mM of dissolved SiO(2) slowed the rate of H(2)O(2) decomposition on aquifer materials by over 80% without affecting the stoichiometric efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of mechanical activation on the carbothermic reduction kinetics of hematite-graphite mixture

The effect of mechanical activation on structural changes and kinetics of carbothermic reduction of hematite with graphite was studied in this research. Hematite powder mixture with graphite (with stoichiometry ratio C/O=1) was milled for the time periods of zero to 50 hours, and the structural changes were studied using X ray diffraction (XRD). The effect of mechanical activation on the kineti...

متن کامل

Investigation of Phenol Removal by Proxy-Electrocoagulation Process with Iron Electrodes from Aqueous Solutions

Background: Phenol as an aromatic hydroxyl compound are considered as a priority pollutant.  Because of their stability, solubility in water and high toxicity had health important. Methods: In the present experimental study, electrocoagulation reactor by iron electrodes are used in the presence of hydrogen peroxide to phenol removing from aqueous solutions. Effects of variables including ...

متن کامل

Studies on the effect of mechanically activating ilmenite concentrate using an attritor on its subsequent iron removal potential and kinetics of dissolution in hydrochloric acid

  Abstract   The effect of mechanical activation using an attrition mill on the particle size of an ilmenite concentrate and its effect on the ability of the concentrate for Iron separation during hydrochloric acid leaching and the kinetics of the dissolution process have been investigated. It was observed that mechanical activation in an attritor significantly enhances the dissolution of iron ...

متن کامل

Application of H2O2 and H2O2/Fe0 in removal of Acid Red 18 dye from aqueous solutions

Background & Aims of the Study: Organic dyes with a complex structure are often toxic, carcinogenic, mutagenic, non-biodegradation and stable in the environment and if released to the environment without treatment can endanger the environment and human health. The aim of this study was to evaluate the performance of H2O2 and H2O2/Fe0 Iron in removal of dye Acid Red 18 from aque...

متن کامل

Kinetics of Ceramic Phase Crystallization in a Glass Derived from Wastes of Iron and Steel Industry

Intensified environmental regulations have posed numerous challenges in the disposal of industrial wastes. The steel industry is one of the biggest production industries, with a considerable amount of daily wastes. Production of glass-ceramic from the steel industry waters is one of the proper solutions for this problem. In this study, the application utilization of different wastes (such as bl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Water research

دوره 46 19  شماره 

صفحات  -

تاریخ انتشار 2012